Note details

How to Convert Improper Fractions to Mixed Numbers Without Using Long Division

BY pp1cz
July 15, 2025
Public
Private
1488 views

Class Notes: Converting Improper Fractions to Mixed Numbers (Without Long Division)

Objective

  • Learn how to convert improper fractions to mixed numbers by breaking down the numerator, avoiding long division.

Step-by-Step Method

1. Identify the Highest Multiple of the Denominator

  • Find the highest multiple of the denominator that is less than or equal to the numerator.
  • Break the numerator into two parts:
    • The largest possible multiple of the denominator
    • The remainder

2. Example Walkthroughs

Example 1: ( \frac{11}{4} )

  • Find highest multiple of 4 under 11: 8 ((4 \times 2 = 8))
  • Break: ( 11 = 8 + 3 )
  • Rewrite: ( \frac{11}{4} = \frac{8}{4} + \frac{3}{4} )
  • Calculate: ( \frac{8}{4} = 2 )
  • Mixed Number: ( 2 + \frac{3}{4} = 2\frac{3}{4} )

Example 2: ( \frac{17}{5} )

  • Highest multiple of 5 under 17: 15 ((5 \times 3 = 15))
  • Break: ( 17 = 15 + 2 )
  • Rewrite: ( \frac{17}{5} = \frac{15}{5} + \frac{2}{5} )
  • Calculate: ( \frac{15}{5} = 3 )
  • Mixed Number: ( 3 + \frac{2}{5} = 3\frac{2}{5} )

Example 3: ( \frac{53}{6} )

  • Highest multiple of 6 under 53: 48 ((6 \times 8 = 48))
  • Break: ( 53 = 48 + 5 )
  • Rewrite: ( \frac{53}{6} = \frac{48}{6} + \frac{5}{6} )
  • Calculate: ( \frac{48}{6} = 8 )
  • Mixed Number: ( 8 + \frac{5}{6} = 8\frac{5}{6} )

Example 4: ( \frac{45}{7} )

  • Highest multiple of 7 under 45: 42 ((7 \times 6 = 42))
  • Break: ( 45 = 42 + 3 )
  • Rewrite: ( \frac{45}{7} = \frac{42}{7} + \frac{3}{7} )
  • Calculate: ( \frac{42}{7} = 6 )
  • Mixed Number: ( 6 + \frac{3}{7} = 6\frac{3}{7} )

Checking Your Work

  • To verify, convert mixed number back to an improper fraction:

    • Multiply whole number by denominator, add numerator of fraction.
    • Keep denominator the same.

    Example: ( 6\frac{3}{7} \rightarrow (6 \times 7) + 3 = 45 \rightarrow \frac{45}{7} )


Tips

  • List out multiples: If unsure, write multiples of the denominator until just below the numerator.
  • Subtraction for remainder: Subtract highest multiple from numerator to get the remainder for the fractional part.

Summary

  • No need for long division.
  • Break up the numerator using multiples of the denominator.
  • Express as whole number plus proper fraction.
    How to Convert Improper Fractions to Mixed Numbers Without Using Long Division