Note details

Conic Sections - Circles, Semicircles, Ellipses, Hyperbolas, and Parabolas

BY gie5z
July 20, 2025
Public
Private
3017 views

Class Notes: Conic Sections - Key Formulas and Concepts


1. Circle

Standard Equation

  • Standard form: [(x - h)^2 + (y - k)^2 = r^2]
    • Center: ((h, k))
    • Radius: (r)

Key Properties

  • Eccentricity: 0
  • Area: (\pi r^2)
  • Circumference: (2\pi r)
  • Diameter: (2r)

Domain and Range

  • Domain: (h - r \leq x \leq h + r)
  • Range: (k - r \leq y \leq k + r)

Semicircle Equations

  • Solve for (y): (y = k \pm \sqrt{r^2 - (x - h)^2})
    • (+) is the upper half, (-) is the lower half.
  • Solve for (x): (x = h \pm \sqrt{r^2 - (y - k)^2})
    • (+) is the right half, (-) is the left half.

2. Ellipse

Standard Equations

  • Horizontal major axis: [\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1], (a > b)
  • Vertical major axis: [\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1], (a > b)

Dimensions

  • Major axis length: (2a)
  • Minor axis length: (2b)
  • Center: ((h, k))

Foci & Eccentricity

  • Pythagorean relationship: (c^2 = a^2 - b^2)
  • Eccentricity: (e = \frac{c}{a}), (0 < e < 1)
  • Foci:
    • Horizontal ellipse: ((h \pm c, k))
    • Vertical ellipse: ((h, k \pm c))
  • Vertices:
    • Major: ((h \pm a, k)) or ((h, k \pm a))
    • Minor: ((h, k \pm b)) or ((h \pm b, k))

Area & Approximate Circumference

  • Area: (\pi ab)
  • Circumference (approx.): (\pi(a + b)) or more accurately: [2\pi \sqrt{\frac{a^2 + b^2}{2}}]

3. Hyperbola

Standard Equations

  • Horizontal transverse axis: [\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1]
  • Vertical transverse axis: [\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1]

Properties

  • Center: ((h, k))
  • Vertices: ((h \pm a, k)) (horizontal) or ((h, k \pm a)) (vertical)
  • Transverse axis (real axis): along the (a) term (positive)
  • Pythagorean relationship: (c^2 = a^2 + b^2)
  • Eccentricity: (e = \frac{c}{a}), (e > 1)
  • Foci:
    • Horizontal: ((h \pm c, k))
    • Vertical: ((h, k \pm c))

Asymptotes

  • Horizontal: (y - k = \pm \frac{b}{a}(x - h))
  • Vertical: (y - k = \pm \frac{a}{b}(x - h))

Domain and Range

  • For horizontal: domain excludes values between the vertices; range is all real numbers.
  • For vertical: range excludes values between the vertices; domain is all real numbers.

4. Parabola

Standard Equations

  • Opens right/left: ((y - k)^2 = 4p(x - h))
  • Opens up/down: ((x - h)^2 = 4p(y - k))
  • Vertex: ((h, k))
  • Eccentricity: 1

Direction and Focus

  • Opens:
    • Up/right if (p > 0)
    • Down/left if (p < 0)
  • Focus:
    • For ((y - k)^2): ((h + p, k))
    • For ((x - h)^2): ((h, k + p))
    • Distance from vertex to focus: (|p|)

Directrix

  • For ((y - k)^2): (x = h - p)
  • For ((x - h)^2): (y = k - p)

Axis of Symmetry

  • Horizontal: (y = k)
  • Vertical: (x = h)

Latus Rectum

  • Length: (4p)
  • Passes through focus, parallel to directrix

Intercepts

  • Right/left opening: Single x-intercept (= \frac{k^2}{4p} + h)
  • Up/down opening: Potentially two x-intercepts: (x = h \pm \sqrt{-4pk} )
  • Similar formula applies for y-intercepts

Additional Notes

  • Formula Sheets: More formulas for domains, ranges, intercepts, and graphs available as printable resources (see video description or provided materials).
  • Reference Videos: Links to additional video tutorials for graphing and examples are available.

End of Notes

    Conic Sections - Circles, Semicircles, Ellipses, Hyperbolas, and Parabolas